
AD-787 732

MULT1VARIATE POLYNOMIAL FACTORIZATION

David R. Müsse r

Wisconsin University

Prepared for:

National Science Foundation
Army Research Office-Durham

July 1974

DISTRIBUTED BY:

KTDl
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Rcyal Road, Springfield Va. 22151

\n 70-31 Uncla s . ifieci
~runty c·-"~'''" ahttl\

r S•rvrll• rtooollt• •"o~ el '"'•· bft~• .. ~.~~~~:~~•~·~:~~o~ot~~ ~~.: b~ -~~~-~ _(f b.Z~ZZ.~d~
0" • <..•-.ATIHG ACTIVIT• (."o .. Nio .ulh.,J ,., .. CPO tilT 'CCUIIItl TY C L.AIIt,.IC A TtOH

Mathematics R·=search Center Unclassified
University of Wisconsin, Madison, Wis. 53706 ,J6. CIIIOUP

None
J •••o•T fiT\.1.

MULTIVARIATE POLYNOMIAL FACTORIZATION

• 0 1 t C ••J• TtYC NOTCI (.,..,.po ot r~t -.4 lftcluelt'O ••••J
Summary Re_port: no specific reportin_g _j:)eriod.

I AU fMQIUII (,ltOI ,,.. l1tlllel, feel,.._,.,

David R. Musser

I lll.f'"OitT DATI. 7 •• TOTAL NO . OF' PAGCI 1··· NO
o,r .. c.ra

Iul:t: 1974 S(, 18
•• CO .. fftAC.T 0 .. C. .. ANThO . M. OIIUGINATOIIIt"l "Cti'O"T NUW.Kit18t

C o ntract No. DA- 31-124-ARO-D-462
II. ~-O.JCC T NO . 1445

None
c . 1&. OT•H C_.O .. T NOll, (Aifr etfMtr _ .. ,. ... , ... T .. eool ,,. ,.,.....,
" None

•O Ott 't •laUTtON .TATCWI.NT

Dis tribution of this document is unlimited.

It IUPP.._I. .. ~N1'A"Y NOT&t ta . I .. OHIOittNO Mt\.ITA .. Y AC T'tYtTY

..
None Army Research Office-Durham, N.C.

aatT.ACT

This paper describes algorithms for factoring a polynomi-'ll in one or

more variables, with integer coefficients, into factors which are irreducible

over the Integers. These algorithms are based on the use of factonzat10ns

over finite fields and 11Hensel' s Lemma constructions." "Abs tract algorithm ''

descriptions are used in the presentation of the underlying algebraic theory.

Included is a new generalization of Hensel's p-adic construction which leads

to a practical algorithm for factoring multivariate polynomials. The univariate

case algorithm is also specified in greater detail than in the previous

literature, with attention to a number of improvements which the author has

developed based on theoretical computing time analyses and experience with

actual implementations.

Unclassified

~ ... ; I l

NA110NI\I 1 fCHNir.AL
'If (W ·,M 1tur ' c r Rvt, r

•#· •• , t r
"'r•'trll'lu·l' VA . t' I

AGO IUIA

THE UNIVERSITY OF WISCONSIN-MADISON

MATHEMATICS RESEARCH CENTER

Contract No. DA-31-124-ARO-D-462

MULTIVARIATE POLYNOMIAL
FACTORIZATION

David R. Muster

This document has been approved for public
release and sale; its distribution is unlimited.

MRC Technical Summary Report #1445

July 1974

Received February 25, 1974

ii

D D C
m ^üüEln

i
rOV il 1974 i

JlkisHnndli
D

Madison, Wisconsin 53706

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

MULTIVARIATE POLYNOMIAL FACTORIZATION

.t

ABSTRACT

This paper describes algorithms for factoring a polynomial in one or

more variables, with integer coefficients, into factors which are irreducible

over the integers. These algorithms are based on the use of factorizations

over finite fields and "Hensel's Lemma constructions. " "Abstract algorithm"

descriptions are used in the presentation of the underlying algebraic theory.

Included is a new generalization of Hensel's p-adic construction which

leads to a practical algorithm for factoring multivariate polVi.omials. The

univariate case algorithm is also specified in greater detail than in the

previous literature, with attention to a number of improvements which the

author has developed based on theoretical computing time analyses and

experience with actual implementations.

+
Computer Sciences Department and Mathematics Research Center, University of

Wisconsin; on leave from University of Texas. This work was sponsored in part
by the National Science Foundation under grants GJ2 39, GJ-3012 5X and GJ-1069,
by the United States Army under Contract No. DA-31-124-ARO-D-462, and by
the Wisconsin Alumni Research r mndation.

Da/id R. Musser

Technical Summary Report #1445
July 1974

MULTIVARIATE POLYNOMIAL FACTORIZATION

David R. Musser

1. Introduction and basic concepts.

This paper presents algorithms for factoring a given polynomial in one

or more variables, with integer coefficients, into factors which are

irreducible over the integers. These algorithms are based on the use of

Berlekamp's algorithm for factoring modulo a prime and "Hensel's Lemma

constructions" as suggested by Zassenhaus [ZAS69]. A new generalization

of Hensel's construction is given, providing a practical basis for an

algorithm for factoring multivariate polynomials.

The algorithm for the univariate case has been implemented by

G. E. Collins and the author in the SAC-1 system for algebraic calculation

[COL71] and tested thoroughly. A detailed description of this implementation

is given in [COL72]. Both the univariate and multivariate algorithms have

been implemented in the Pascal language at the University of Texas by

R. T. Charleton [CHA73].

Following a brief discussion of notation and basic concepts of factor-

ization and use of homomorphic mappings, we shall define the concept of an

abstract algorithm. in order to present concisely the common theory behind

the univariate and multivariate algorithms. Section 2 gives an overview of

the main steps in factorization, followed by detailed abstract algorithms

in Section 3. In Sections 4 and 5 we consider the details of applications of

'Computer Sciences Department and Mathematics Research Center, University
of Wisconsin; on leave from University of Texas. This work was sponsored in
part by the National Science Foundation under grants GJ2 39, GJ-30I25X and
GJ-l0f)9, by the United States Army under Contract No. DA-31-124-ARO-D-462,
and by the Wisconsin Alumni Research Foundation.

the abstract algorithms to the unlvarlate and multivariate Integral polynomials.

Some consideration Is given to computing times In these sections.

1.1. Polynomial notation

A polynomial A(x) = a x +... + a.x + a,, with coefficients a
n 10 n' '

a a from a ring R , a * 0 , Is said to have degree n, leading coefficient

a , and trailing coefficient (or constant term) a„; we write
n r • 0

deg(A) = n , lc(A) = a , tc(A) = a .

By convention, we define

deg(0) = -oo, lc(0) = 0 , tc(0) = 0 .

If R has an Identity 1 , we say A(x) Is monlc if lc(A) = 1.

1. Z. Unique factorization domains

In a commutative ring with Identity, zero-dlvlsors are elements y and

z such that y • z = 0. A unit Is a divisor of unity, and a prime Is a nonunlt

element which cannot be expressed as a product of nonunlt elements. An Inte-

gral domain Is a commutative ring with Identity which contains no zero-dlvlsors.

A unique factorization domain (UFD) Is an Integral domain in which every non-

zero element is a unit, or Is prime, or has a unique factorization into primes

(an expression as a product of a finite number of primes which is unique except

for unit factors and the order of factors).

Primes are also called Irreducible elements, and a unique factorization

Into primes Is often called a complete factorization.

The Integral domain Z of Integers Is a UFD (Fundamental Theorem of

Arithmetic), In which the only units are I and -I. Any field F Is a UFD in

which every nonzero elemenL is a unit and there are no Irreducible elements.

-2- #1445

According to a theorem of Gauss [VDW49, §23], the polynomial domain

Dfx, ...,x] Is a UFD whenever D Is. Thus, for example, Z[x.,...,*]

and Pfxt,....X 1 are UFD's. 1 I' ' nJ

I. 3. Homomorphlc mappings

A mapping h from a ring R Into a ring R Is called a homomorphlsm

If for all a, b € R ,

(1) h(a+b) = h(a) + h(b) ,

(2) h(ab) = h(a)h(b) .

The application of homomorphlc mappings to factorization Is based on

the factor preserving property (2). The classical algorithm for factoring poly-

nomials, Kronecker's algorithm [VDW49, §25], Is based on the use of evalua-

tion homomorphlsms. For any fixed a c R, the mapping e of R[x] onto R ,
a

defined by e (P) = P(a) for all P(x) c R[x], Is homomorphlc and Is called an
a

evaluation homomorphlsm. To factor P(x) c Z[x], for example, Kronecker's

algorithm evaluates P(x) at several Integers, factors the resulting values In

Z , and constructs the factors of P{x) using Interpolation.

Another well-known application of homomorphlc mappings to polynomial

factorization Is the use of mod p factorizations, where p Is a prime Integer.

Let P{x) c Z[x] and p be a prime which does not divide the leading coeffi-

cient of P . Let h denote the homomorphlsm of Z onto Z , the ring of
P P

Integers modulo p . Z Is actually a field, so Z [x] Is a UFD. If h (P)

turns out to be Irreducible over Z , then P Is Irreducible over Z (except

possibly for Integer factors). If h (P) does factor, then Its factorization

gives an Idea what degrees the factors of P might have, and what residue

<fl44S -3-

classes the coefficients modulo p iiilght belong to. These facts have long

been used in the limitec 'mber of cases in which h (P) is easy to factor,

e.g. [VDW49, §25]. More general applications of mod p homomorphisms have

become possible since the invention in 1967 by Berlekamp of efficient algorithms

for factorization in Z [x] ([BER68, Ch. 6], [KNU69, §4.6.2]). A second break-

through was Zassenhaus' suggestion that a construction based on Hensel's

Lemma, from the theory of p-adic fields, could be used to progress from a

mod p factorization to a corresponding factorization modulo any power of p

[ZAS69], Taking p sufficiently large, we can determine from consideration

of all mod p factorizations all factorizations over the Integers. This

" Berlekamp-Hensel" factorization algorithm has been Improved and extended

In a number of ways, as discussed previously in [BER70] and [MUS71]. [COL7 3],

Section 5, gives an overview of this research. The author's main contributions

have been the detailed specifications and Implementation of a univarlate fac-

toring algorithm, with extensive analysis of maximum computing times, and

generalization of Hensel's construction to several moduli as a basis for a new

multlvariate algorithm. Wang and Rothchlld [WAN73] use a different generaliza-

tion of Hensel's construction, but as yet no comparison of the merits of the

two constructions has been made.

1. 4. Abstract algorithms and validity proofs

In this paper we shall use "abstract algorithm" descriptions In order to

present compactly the common theory behind factoring algorithms for both the

univarlate and multlvariate cases and for a number of coefficient domains. An

abstract algorithm Is one In which the domains of the Inputs and outputs are

-4- #1445

abstract sets or algebraic systems such as rings, integral domains, or fields.

An example of an abstract algorithm is:

Algorithm D (Division of polynomials over a ring). Let R be a com-

mutative ring with identity. Given polynomials A, R « R[x] with lc{B) a unit

of R, this algorithm computes polynomials Q, R € R[x] such that

A = BQ J- R and deg(R) < deg(B).

(1) Set 0*- 0 and R«- A .

<Z) (Now Q, R € «[x] and A = BQ + R.) If deg(R) < deg(B), exit.

(3) Set n - deg(R) - deg(B), T *■ (lc(R)/(lc(B))xn, Q «- Q + T ,

R-«- R - TB (this reduces the degree of R), and go to (2).

In dealing with abstract algorithms we leave open the question of what

assumptions are required about the abstract domains involved in order to prove

effectiveness of the algorithm. (Such questions have been dealt with else-

where, e. g. [RAB60].) We shall however require that, under the assumption

that each step can be effectively performed, the algorithm will terminate in a

finite number of steps. A proof of termination of Algorithm D is Indicated in

the parenthetical assertion in step (3): by the choice of the term T of the

quotient polynomial Q , both R and TB have the same leading coefficient,

hence the new value of R, R = R - TB, is of smaller degree than that of R ,

and thus the condition tested in step (2) must eventually be satisfied.

If we do not require effectiveness in our abstract algorithms, the

reader may well ask, by what criteria do we construct them? For we could in

some steps of our algorithms merely cite the existence of some quantity with-

out any indication of a method of constructing the quantity. However, all of

111449 -5-

the algorithms to be presented have been written with the purpose of general-

izing methods which are known not just to be effective in particular domains,

but to be "very effective" or "efficient" methods. This is meant in the sense

that each step of the abstract algorithm is of sufficient simplicity that there

are known to be efficient algorithms for carrying it out in at least one particular

domain. In Algorithm D, for example, each step involves only simple arith-

metic operations for which efficient algorithms are known when R Is the ring

of integers, or the rational number field, or a finite field.

Besides the proof of termination, we are also Interested In proving the

validity of the algorithm: that when applied to inputs which satisfy the Input

assumptions, the algorithm produces outputs which satisfy the output asser-

tions. The method of proof to be used Is based on the method of "inductive

assertions" described In [FL067] and [KNU68, §1. 2,1]. The basic Idea of the

method Is to associate with some or all of the steps or substeps of the algo-

rithm assertions about the current state of the computation, and to prove that

each assertion Is true each time contiol reaches the corresponding step, under

the assumption that the previously encountered assertions are true. If this can

be done In such a way that the assertions associated with the first step are the

Input assumptions and those associated with the terminal step(s) are the output

assertions, then the algorithm Is necessarily valid, by Induction on the number

of steps performed.

In applying the method we have usually not attempted to list all of the

assertions which actually hold at each step; In general we have tried to main-

tain about the same degree of expllcltness as Is usual In a conventional proof

-6- #1445

of a theorem. In Algorithm D, we have included only two assertions, in step

(2), for the purpose of proving validity (the assertion in step (3) was included

for the sake of proving termination, as discussed previously). It is trivial

that these assertions are true the first time step (2) is executed. Assuming

them true at a given execution of step (2), they may be shown to be true at the

next execution as follows: Let Q. = 0 + T and R = R - TB; since lc(B) is

a unit, T e R[x], hence so are Q, and R.; also BQ. + R, = B(Q + T) + R -

TB = BQ + R = A; since 0 is set to Q. and R to R. in step (3), the asser-

tions Q, R c R[x] and A = BQ + R still hold when step (2) is reached again.

The abstract algorithm concept may be easily formalized in terms of

conventional set theory, and in fact such a formallzatlon is given by Knuth In

his initial formal definition of Mgorlt ms fKNU68, pp. 7-8]. (Knuth goes on

to modify this definition to Include ths property of effectiveness.) The Induc-

tive assertion method Is also easily formalized In terms of Knuth's model, as

shown In [MUS71].

#1445 -7-

2. Overview.

In Section 3, we shall state the basic algorithms for factorization in

D[x] where D is any UFD. In Sections 4 and 5 we consider separately the

cases that D = Z and D = Z[v ,... , v]. Assume we are given a polynomial

C(x) c D[x] to be factored, i.e. we are given a representation

^,i y m m-l _ C(x) = ex + c .x + .. . + c , c € D
m m-i ü i

and we must determine the factors of C(x) which are irreducible over D .

The following are the essential steps of the overall algorithm:

1. First eliminate proper factors of degree zero and repeated factors

by means of greatest common divisor calculations In D and D[x].

(These steps are sufficient to satisfy some of the assumptions made in

later phases of the algorithm, particularly Hensel's construction.)

Thus we have

C(x) = jT F (x)
1=1 I

where the F are distinct Irreducible polynomials of positive degree,

and our task Is to determine these F .

2. Choose p,,...^ In D such that factorization In Efxl Is
1' m l J

possible, where E = D/(p ,... , p). (With D = Z, we will have

m = 1, choosing a single prime integer p and E will be Z = GF(p),

the Galois field of order p. With D = Z[v.,... ,v] we will have

m = n+1, choosing a prime p and lintsar polynomials v.-a ,.. . , v -a

as the moduli; again E = GF(p).)

-8- #1445

3. Obtain a factorization

CHCIFG (mod p ,. . . ,p)

c =lc(C), Gk€ D[x]

not necessarily complete, but such that each F corresponds to a

product of one or more of the G. ; I.e. there is a partition of

(GLi..*tO) into subsets *,,...,£ suchthat x V TJ 1' ' q

Fi ~ fi "^ G (mod Pl Pm)

G«!

f, = Ic^) .

4. Using Hensel's construction, lift the G to corresponding

H t D[x] such that

C = c TT Hk (mod Pj ,... jp^)
k=l

for sufficiently large positive integers j.,... ,j

5. Partition the H, into subsets IT. such that
J. I

F H f. M H (mod p.1,...,?/")
1 1 H « V 1 m

thereby determining the F. .

In order to simplify the presentation, we shall confine the discussion

in Section 3 to the case of a single modulus and defer generalizations

to several moduli to Section 5.

#1445 -9-

3. Abstract factoring algorithms

3.1. Reduction to a primitive polynomial. If C(x) = c. t D then we

merely factor c. in D ; we assume the existence of an algorithm

for this factorization. Otherwise, we compute the greatest common

divisor d of c , ..., c (called the content of C in D) and divide

C(x) by d, thereby obtaining a primitive polynomial C (x) , i.e.

one whose coefficients are relatively prime. Thus C (x) , called the

primitive part of C(x) (denoted pp(C)) has no proper factors of degree

zero, and this property simplifies the task of factoring C (x) . We

proceed to factor d and C (x) and combine the two lists of factors

to produce the list of factors of C(x) .

3.2. Reduction to squarefree polynomials. Given a primitive polynomial

C(x) over D , we proceed to factor it into squarefree polynomials, i.e.

having no repeated factors. Using greatest common divisor calculations

we obtain a factorization

C . QQJ ••• Q* (1)

where 0. is the product of all the irreducible factors of C with

multiplicity i . We then factor each Q , putting i copies of each

factor on the list of factors of C .

The algorithm for producing the factorization (l) is based on

Theorem S below. For its statement we require two definitions:

Elements x and y in a ring D are said to be associates if x = uy

for some unit u of D . We write x~ y (this is an equivalence relation).

-10- #1445

The characteristic of a ring D is the smallest positive integer n

such that nx = 0 for all x in D , or zero if no such integer exists.

(If D is an integral domain, the characteristic is prime if it is not zero.)

Theorem S ■ Let D be a UFD, C be a nonconstant, primitive

polynomial over D, and B = gcd(C, C) where C denotes the
e e

derivative of C . Let C = P, • • • p be a complete factorization of C .
I n

a. If deg(B) = 0 then C is squarefree.
e -1 e -1

b. If D has characteristic zero, then B ~ P, • • • P
* I n

c. If D has characteristic zero and C is squarefree, then B ~ I .

d. If D has characteristic zero, then C/B ~ P • • • P , the
' 1 n '

greatest squarefree divisor of C .

2
Proof: a. Suppose C is not squarefree; thus C = P Q for some

P and Q over D, deg(P) > 0 . Then C = P^' + ZPP'Q is a multiple

of P, hence P|B, hence deg(B) > 0 . Thus deg(B) = 0 implies

C is squarefree.

b. Since B | C, B ~ P
I

Pn, where 0<6 <e., l<i<n
n ' — i — i' — -

To show that 6. = e - 1, let P = P,, e = e. and Q = C/P . Then
i i r i

C ■ PeQ and C = P^' + eP^P'Q, hence P6"1 |B . Suppose Pe|B .

Then ?e\c,, hence Pe|ePe~ P'Q , and since D is an integral

domain, PleP'Q . But P and Q are relatively prime, so PleP' .

Since the characteristic of D is zero, eP' # 0 , hence degleP") > deg(P) ,

a contradiction. Thus P^B , while Pe |B , so 5, = e - 1 = ei - 1 .

c,d. Obvious from b .

#144S -11

Thus to factor C one could compute the greatest squarefree

divisor A = C/gcd(C, C) and factor it to obtain the P , then divide

C by P, as many times as possible, to determine the e . However,

we can do better than this if C is not already squarefree, for we will

show that we can then partially factor A and determine the e by
i

means of further god calculations.

Let 0 = TT P, , where E = {j:e. = i} . (Q = I when
1 H E. J J

E is empty.) Then, for t = max{e ,...,e } we have

C « O.Qj •*' Qj i Oj squarefree,

deg(Qt) > 0, gcd(Q,,Q,) ~ 1 for i # j . (2)

We call (2) a squarefree factorization of C , since each Q, is either

unity or a squarefree polynomial of positive degree. The Q are uniquely

determined by the conditions in (2), except for unit factors.

By Theorem S , if B = gcd(C, C) and A = C/B then

B~ Q2Q^ ••• Q*"1 and A~ Q.Q • • • Qt . If D = gcd(A, B) then

D ~ Q?Q • • * Q , hence 0 ~ A/D . The following algorithm shows

how we can continue, computing Q_,.. ., Q :

Algorithm S (Squarefree factorization). Let D be a UFD of

characteristic zero. Given a primitive polynomial C of positive degree,

2 t
let C = Q 0 • • • Q be a squarefree factorization of C . This

• *

algorithm computes t and A ~ 0., • • •, A ~ Q .

-12- #1445

(1) Set B - gcd(C, C), A*- C/B, j «- 1 .

(2) (Atthispoint B~ Q, of ••• Qj"j and A~Q.Q. •••Q)

(3)

(4)

If B ~ 1 then set t *- j, A ♦- A , and exit.

Set D «-gcd(A, B), A. - A/D. (Then D ~ Q, .Q,., •♦*Qt

and A, ~ 0. •)
J J

Set B - B/D, A - D, > -) H , and go to (2).

The reader may easily verify the inductive assertions in the algorithm.

Algorithm S is based on an algorithm presented by Horowitz in

[HOR69, pp. 58-60, 69-70], which in turn was based on an algorithm

due to Robert Tobey. Horowitz' version is equivalent to Algorithm S with

steps (3) and (4) replaced by:

(3') Set E *- gcd(B, B'), D - B/E, A. - A/D . (Then

E~ Q. ,0"
jt2 j+3

Q
t-j-i

(4*) Set B *-E, A - D, j - j + l, and go to (2).

Note that D and E = B/D are computed in both versions, but

in different ways. Algorithm S appears to require slightly less computation

than Horowitz' version, but its main virtue seems to be that it can be

easily adapted for squarefree factorization over finite fields (which are

of prime rather than zero characteristic), whereas it appears to be rather

difficult to adapt Horowitz' version for this problem. Algorithms for the

finite field case are discussed in [MUS71]. These algorithms are,

however, not necessary in the application to factoring integral polynomials,

as will be seen in the following section.

^1445 -13-

3.3. Choice of modulus. Now assume C(x) is primitive and square free.

We next choose a modulus p such that factorization in E[x] is

possible, where E = D/(p) . We shall see in Section 3.7 that in

order to apply the Hensel construction to lift a given factorization

C 5 AB(mod p) (1)

to a corresponding factorization

C ■ AB(mod pj)

it is necessary to also have S, T such that

AS + BT = l(mod p) . (2)

Sufficient conditions for the existence of S, T are that E be a field

and A and B be relatively prime over E , for then the Extended

Euclidean Algorithm yields S and T . Let us assume that we can find

p such that E is a field and C has the same degree and remains

squarefree mod p (i.e. when regarded as a polynomial over E). Then,

in (l), Ä and B must be relatively prime, and thus (2) is satisfiable.

As we saw in Theorem S, oart a, if we compute B = gcdlCjC) in E[xl

and find deg(B) =0then this guarantees that C is squarefree in E[x] .

In the case D = Z , we choose a prime integer p , obtaining

E = GF(p) , the Galois field of order p . We shall see in Section 4.1

that there are only a finite number of primes p for which C can fail

to be squarefree mod p . There are a number of other considerations

in the choice of primes in Z as we shall discuss in Section 4.1.

-14- ^1445

3.4. Factorization mod p. Since we have chosen p so that E is a field,

E[x] is a UFD. We assume the existence of an algorithm for factoring

in E[x] , but not necessarily one which obtains the complete factoriza-

tion of C mod p . A partial factorization

C = g TT G (modp) (1)
k=l K

will suffice, provided the G. are distinct and there exists a partition

of the G, into subsets corresponding to the irreducible factors F

of C , as described in Section 2, step 3. Ideally, we would like to

find the factorization in which each G is the image of some F, , but

generally there is no a priori way of satisfying the partition requirement

other than obtaining the complete factorization in E[x) . We shall see,

however, in Section 5 a very important case in which it can be satisfied

with a partial factorization.

Since E is a field, it is convenient to assume the G. are monic.
' k

Then g = lc(C)(mod p) .

Of course, if we find that r = I then since C(x) has the same degree

modulo p , it must be irreducible over D , and we are done. Other-

wise we have to continue with the following steps.

3. i. Determining modulus size. In choosing our modulus p , we gave

no consideration in Section 3.3 to its "size." If D = Z and p is

sufficiently large, then the set {- LP/2J , ..., 0,.. ., LP/ZJ) of

residues of p contains the coefficients of any factor of C , and we

■•1-14S •15-

could proceed directly to determine the true factors of C using the

mod p factorization. For large p, however, it may be very difficult

to obtain the mod p factorization (this point ts discussed further in

Section 4.1). Hensel's construction provides the alternative of using

a small prime p and lifting a mod p factorization to a mod p

factorization for sufficiently large j .

J

In the case of an abstract domain D , our assumption at this

point is that we can algorithmically determine a positive integer j and

a complete set of residues R of p , such that R is a factoring

set for C . In general, we define a factoring set for C to be any subset

of D which contains the coefficients of any facLor A^ of

C'' = lc(C)-C for which deg(A"') < Ldeg(C)/2J and lc(A") I lc(C) .

These requirements may seem odd, but will become clear when we examine

the operation of the algorithm for finding true factors, in Section 3.8.

3.6. Lifting a factorization (Hensel's construction for several factors).

At this point we have a primitive, squarefree polynomial C* D[x], p t D

such that E = D/(p) is a field and C has the same degree and is

squarefree mod p, a positive integer j and monic polynomials

G , ...,G c D[xl(r>2) suchthat

C s lc(C)G.
1

G (mod p) .

-16- #144S

The goal now is to lift this factorization to a corresponding one

mod p , i.e.

C = lc(C)H H (mod pJ)
r

H ■ G.(mod p)

deglH.) ■ degCG.) > i - l,...,r .

H, is monic
i -'

This is done by repeated application of Hensel's construction to pairs

of factors in which one factor is G. and the other is G, • • • G .
i i + l r

1. Set C - C mod p, i - 1 .

2. (Now we have

a. CL = CH • • • H. (mod p) where Cn was the 0 i i-r 0

initial value of C ;

b. Hk = G (mod p), deg(H) = deg(G), and H is

monic for k = 1, . .., i - 1;

c. C = C = lc(C)G.G. , • • • G (mod p); ii+l r

d. C is squarefree mod p.)

Set A*-G,, B - C/A (division mod p). (Thus C= AB(mod p),

A is monic, and A and B are relatively prime mod p ,

byd.)

3. Using the Extended Euclidean Algorithm, obtain S, T t D[x]

suchthat ÄS + BT = l(mod p).

4. Apply Algorithm 0 (Hensel's construction, as described in

Section 3.7) to p, j, C, Ä, B, S, T, obtaining A, B, S, T€D[x)

^144S -17-

such that

C ■ AB(mod pj)

A = A(mod p)

B ■ B(mod p)

deg(A) = deg(A)

A is monic .

5. Set H *- A, C •- B, C - B, i *- i + 1 . If i < r , go to

step 2. Otherwise, exit.

3.7. Quadratic Hensel construction. This "quadratic" construction, so-

2 4 8
called because it progresses through factorizations modulo p, p , p , p , ...

in successive iterations, will be given in essentially the form discussed

by Knuth [KNU69, pp. 398, 546]. This version differs somewhat from

the construction proposed by Zassenhaus [ZAS69], although the latter

is also quadratic in nature. (Hensel's original construction, in the

theory of p-adic fields, was linear [VDW 49, pp. 248-250].)

Algorithm Q (Quadratic Kensel Algorithm). Let D be a commuta-

tive ring with identity. The inputs are an element p of D; a

positive integer j; and polynomials C, A, B, S, Tt D[x] suchthat

C ■ ÄB(mod p), AS h If ■ l(mod p), Ä is monic.

The outputs are q = p where i > j and A, B, S, T t D[x] satisfying

C ■ AB(mod q), AS + BT = l(mod q) ^

AsÄ, B = B, S = S, fm T(mod p), S (l)

deg(A) ■ deg(A) and A is monic.

18- #1445

1. Set i- I, q - p, A - A, B - B, S • S, T * T .

2. (Now q = p ; A, B, S, T t D[xl and the conditions (l) are

satisfied.) If i > j , exit.

3. Set U *- (C - AB)/q . (Since C = AB(mod q) we know

U t D[x] .) Using Algorithm S, which is described below,

with inputs A, B, S, T, U, solve the congruence AY + BZ = U(mod q)

for Y, Zc D[x] suchthat deglZ) < deg(A) .

4. Set A - A + qZ, B *- B + qY . (Thus

C - AV" = C - AB - q(AY + BZ) - q2YZ

= q(U - AY - BZ) - q2YZ

2
= 0(mod q) ;

* - * _
furthermore A = A = A(mod p) and B = B = B(mod p); and,

since deg(Z) < deg(A), deg(A) = deg(A) = deg(A) and

lc(A) = lc(A), so A is monic.)

5. Set U -^ (A S + B^T -l)/q . Using Algorithm S with inputs

A, B, S, T, U , solve the congruence AY f BZ = U (mod q)

for Y ,Z € D[x] such that deg(Z) < deg(A) .

6. Set S" -^ S - qY , I «^ T - qZ . (Thus

A""S* + B'T"" = A*(S - qY) ► B""(T - qZ)

■ AVS + B"'T - q(A"CYi + B*Z1)

■ 1 + q(U1 - A5'^ - B*Z1)

= 1 + q(U1 - AY1 - BZ^mod q2)

= I (mod q).)

11445 -19-

7. Replace i,q,A, B,S,T by 2i, q , A , ß ", S', T and go to step 2.

Note that we did not need to assume D was a UFD, but only a

commutative ring with identity. The algorithm of Section 3.6 also

works under this weaker assumption. In Section 5 we shall see applica-

tions of these algorithms when D is commutative with identity but

fails to be an integral domain.

Algorithm S (Solution of a polynomial equation). Let E be a

commutative ring with identity. Given A, B, S, T, U c E[x] suchthat

lc(A) is a unit of E and AS + BT = 1, this algorithm computes

Y, Z t E[x] such that AY + BZ = U and deg(Z) < deg(A) .

1. Set V - TU .

2. Using Algorithm D of Section 1.4, compute Q, Z t E[x] such

that V = AQ < Z, deg(Z) < deg(A) .

3. Set Y - SU + BQ and exit. (Then AY + BZ = A(SU 4 BQ) +

B(TU - AQ) = (AS + BT)U = U) .

In Section 3.9 we shall prove two Iheorems concerning the uniqueness

of the outputs of Algorithms S and Q.

3.8. Finding true factors. Having obtained the mod m = p factors

H , .. ., H of C from the algorithm of Section 3.6, we must now consider

each combination of these factors, testing by trial division whether its

modulo m product is a true factor. Since we do not know the leading

coefficient of the factor, it is necessary to form the factor with leading

■20- #1445

coefficient c = lc(C) and attempt to divide it into C' = c- C. If

this division successfully yields a factor A of C then pp(A) is

a factor of C . Only those combinations with deg(A) < Ldeg(C)/2J

need be considered. From these considerations we can now see the

motivation for the definition given in Section 3. 5 of a "factoring set" R

for C : a set which contains the coefficients of any factor A of C

for which deg^") < Ldeg(C)/2J and lc(A')|c.

Algorithm T (Finding true factors by combining modulo m factors).

Let D be a UFD, m be an element of D and R be a complete set

of residues of m in D . Given a primitive polynomial C t D[x]

and a list of monic polynomials H , .. ., H t D[x] , such that

C = lc(C)H •• • H (mod m)
1 r

this algorithm obtains irreducible F , . . ., F t D[x] comprising the

complete factorization of C:

C = F • • • F .
1 Q

The following conditions are assumed to be satisfied.

a. R is a factoring set for C .

b. For each factor F there is an index set L C {l, . . .,r}

such that

Fk = lc(Fk) TT H.(mod m)

tfl-WS •21

Remark: In Section 3.9 we shall show that the mod m = p

factors H , . . . f H produced by the algorithm of Section 3. 6 satisfy

assumption b.

1. Set q •- 1, d •- 1. (d will run through tne integers

1,2, ...,Ldeg(C)/2j) .

2. Set c - lc(C), C «-e*C .

3. (Now we have a, b and

c. C. = C TT F.(mod m) where C = initial value

of C ;

d. F , . .., F are irreducible ;

e. C ■ lc(C), C = cC ;

f. C has no factor B such that 0 < deg(B) < d.)

If d > Ldeg(C)/2J , set F *■ C and exit.

4. For each IC {l,...,r} suchthat 2J deg(.'j = d:
i€ I l

a. Set A — c I 1 H mod m , with coefficients in R .
it I

b. If A |C , set B — C /A and go to step 6.

5. Set d ♦- d M and go to step 3 .

6. Set A - pp(A), F - A, q «- q ^ 1, C - B /lc(A) , and

delete from H , ...,H those H with i t I (this changes

r) .

-22- *1445

3.9. Correctness of the overall algorithm. To establish the correct-

j
ness of the overall algorithm we have to prove that the modulo m = p

factorization obtained by the algorithm of Section 3. 6 satisfies the

input assumption b of Algorithm 3.8T, namely that to each true factor

F of C there is some corresponding set of factors H in the

modulo m factorization.

To this end we first prove:

Theorem S. Under the assumptions of Algorithm 3.7S, the poly-

nomials Y and Z are uniquely determined.

Proof: Let AY + BZ = U with deg(Z) < deg(A). Then

AY + BZ = AY ♦ BZ, which may be written

JKY| - Y) = B(Z- ZJ, (1)

Upon multiplying both sides by T and adding AS(Z - Z) to both

sides, we obtain

A[S(Z - Z^ ♦ T(Y1 - Y)] = (AS + BT)(Z - Z) • 2- Z .

Unless the polynomial in brackets is zero, the degree of the product on

the left side is > deg(A), since lc{A) is a unit. But

deg(Z - Z) < deg(A), so we conclude that Z = Z and by (i) we then

have A(Y - Y) = 0, which, with the fact that lc{A) is a unit,

implies Y = Y.

The following theorem concerns the uniqueness of the polynomials

computed by Algorithm 3.7Q:

11445 -23-

,

Theorem Q. Let D be a commutative ring with identity, p be

an element of D which is not a zero-divisor, and j be a positive

integer. Let A, B, A , B , S, T t D[x] satisfy

a. A,8, = AB(mod pJ)

b. deg(A) = deg(A), IcfAj = lc(A) = I;

c. A = A and B = B(mod p);

d. AS + BT = l(mod p).

Then A = A and B = B(mod pJ).

Proof: From c we have the conclusion when j = 1. Let j > 1 •

From a, we have AB = AB(mod p), so we may assume by induction

that A = A and B 2 B(mod p). Hence there exist Y, Z e D[x]

suchthat A = A + p^^, B = B + p^Y. Thus

AB ■ AB + p^lAY + BZ) f p2J~2YZ,

0 = p^^AY + BZ)(mod pj).

From this congruence and the assumption that p is not a zero-divisor

follows

AY + BZ= 0(mod p).

Also, by b we have deg(Z) < deg(A). Hence by Theorem S applied to

the ring D/(p) we have Y = Z= 0(mod p), from which we obtain

the conclusion of the theorem.

We are now prepared to prove:

Theorem T. Let D be a UFD and p be an element of D for

which D/(p) is a field. Let C € D[x] for which p-(lc(C) and C

-24- *1445

is squarefree mod p. Suppose C has the factorizations

C = F •■■?.?, distinct, irreducible;
1 q' i '

C ■ cG, • • • G (mod p)
1 r

C = cH1 • • • Hjmod pj)

c = lc(C); G , H monic;

Hj ■ G^mod p);

and that {l. ..., r} is the disjoint union of index sets I , ..., I
i q

such that

FkHfk TI G^modp)
1 £ lk

fk - lc(Fk) .

Then also

Fk = fk TT H.(mod pj) .
i£lk

Proof: Since p 4lc(C), also P T f. and f, exists mod p.

It is easy to show that f. exists mod m = p also. Put

AH f^F^mod m) ,

B ■ C/A(mod m) ,

k

A1 H TT H^mod m) ,

B so IT H (mod m) , I={l,...,r}.
i« I - I,

k

#144S •25-

Then we have

a. A, B, 2 AB(mod m)

b. d»f(A) = deg(A), lc{A^) = lc(A) = 1

c. A H A and B = B(mod p).

d. Since C is squarefree mod p, A and B are relatively

prime mod p and there exist S, T such that

AS + BT s l(mod p).

Therefore, by Theorem Q, A = A and B ■ B(mod m) and therefore

Fk H fk TT H^mod m) ,

as was to be shown.

-26- #1445

4. Application to univarlate polynomials over the integers

To obtain algorithms for factoring univariate polynomials over the

integers, we take D = Z and choose a prime integer p as the modulus,

so that the mod p factorizations are factorizations of polynomials over

E = Z/(p) = Gr(p) the Galois field of order p. GF(p), and more

generally, Z/(m) with m = p is conveniently represented by the

integers 0,1, 2,.. ., m-1, with arithmetic performed modulo m. The

"symmetric residues" - [m/Zj, ,. . ,0, .. . Im/Z] (m odd) could also

be used. Division of a by b , with b relatively prime to m ,

can be performed using the Extended Euclidean algorithm to compute

multipliers s,t such that bs <- mt = 1, so that bs H 1 (mod m) and

as = a/b (mod m). Arithmetic modulo m is discussed further in

[KNU69, §4.6. 1] and [COL69].

4.1. Choice of a prime. The first consideration in the choice of a

prime p is that the squarefree polynomial C(x) must remain squarefree

modulo p. Since C is squarefree, the discriminant of C, discr(C),

is a non-zero integer. Let C = C mod p. If p does not divide lc(C)

then discr(C) - discr(C) mod p, so if p is not a divisor of discr(C)

then discr(C) # 0 and C is squarefree. Hence C mod p is squarefree

for all but a finite number of primes; and in fact, for a given p, C mod p

is squarefree with probability 1 - 1/p [KNU69, Ex. 4. 6. 2-2]. We

can efficiently test whether C is squarefree by testing whether

gcd(C, C') = 1 in GF(p)[x], where C' is the derivative of C.

^144S ■27-

The size of primes used is an important factor in the choice of

an algorithm for factoring over GF(p). Trying large priines would reduce

the chances of encountering primes for which C mod p has repeated

factors, and would also reduce the number of Hensel's construction

iterations required to make p sufficiently large. However, Berlekamp's

1967 algorithm for complete factorization over GF(p) is efficient only

for small primes. The algorithm has two phases. In the first phase the

number, r, of irreducible monic factors of the input C is determined.

If r > 1, the second phase is performed to determine the actual factors.

3 2 2 3
The computing time for the first phase is dominated by n (log p) + n (log p) ,

2 2
where n = deg(C) and the time for the second phase by n rp(log p) .

[KNU69, §4.6.2].

A newer algorithm devised by Berlekamp [BER70] is more efficient

for large primes, at least in terms of average computing time. This

algorithm has an average time dominated by a polynomial function of n

and log p but the maximum ccmpuling time may be codominant with

n p(log p) .

By contrast, the maximum time for the quadratic Hensel construction

to lift a mod p factorization to a mod m = pJ factorization is dominated by

2 2
n (log m) + n(log m)log c , where c is the maximum size of coefficients

of C [MUS71]. Thus use of Berlekamp's original algorithm with a

small prime p followed by Hensel's construction is probably much

more efficient than to use Berlekamp's newer algorithm with a large prime.

-28- #144S

Another consideration is that the newer algorithm is considerably more

complex than the earlier algorithm.

The third major consideration in the choice of a prime p ir. the

number r of factors in the complete mod p factorization. If C is

irreducible, but splits into r > 1 irreducible factors mod p, then r

factors are also obtained mod m = p and a total of 2 subsets

of factors are considered in Algorithm 3.81. The time for all other phases

of the overall algorithm is dominated by a polynomial function of n and

log c (this is shown in [MUS7 1]), but since r can be as large as n ,

the time for Algorithm 3.8T can be an exponential function of n. The

average time for randomly chosen inputs C (which are almost always

irreducible IKNU69, Ex. 4.6.2-27]), is a polynomial function of n

and log c, since it can be shown that the average value of r is

about log n and the average value of 2 is about (nU)/2. How-

ever, the variance of 2 is quite large, about (n -n)/24, causing

a large variance in the overall computing time.

In order to reduce this variance one can factor modulo sevrral

small primes for which C mod p is squarefree and choose a p which

yields the smallest number of irreducible factors. Unfortunately, no

matter how many primes are used, the maximum computing time will

still be exponential in n: H.P.F. Swlnnerton-Dyer has shown (see

[BER70]) that for any n which is a power of 2, there is an irreducible

integral polynomial of degree n which has at least n/2 irreducible

«144S ■29-

factors modulo p for every prime p. By considering the size of the

coefficients of these polynomials, the author has established that the

computing time of any Berlekamp-Hensel algorithm for factoring integral

polynomials cannot be dominated by a polynomial function of n and

log c. The same result can also be established using a certain class

2
of cyclotomic polynomials which have more than (log n) factors for

every prime.

Finding an algorithm for factoring integral polynomials with a

polynomial dominated maximum computing time (or proving no such

algorithm can exist) is a very interesting open problem. Nevertheless,

it may not be a problem of great practical importance since the average

time of the Berlekamp-Hensel algorithm is polynomial dominated.

There are other advantages to be gained from performing factoriza-

tions modulo several different primes. By considering the possible

degrees of factors in these factorizations, we obtain important information

about the degrees of true factois. if C has r irreducible mod p

factors, then in a time dominated by rn we can compute the degree

set D , the set of degrees of all mod p factors. Since the chosen
P

primes do not divide lc(C), the degree set of C must be contained

in D for any prime p and therefore must be contained in
P

D flD O-«- flD , where p^p,,...^ are the primes tried.
p1 P2 Pv 1 2 v

In general, this set can be used to eliminate many of the cases that

would otherwise have to be considered in Algorithm 3.8T; and in

30- #144S

particular, when C is irreducible, we will often find

D D D D • • • = {0,n} after only a few primes have been tried, n n ' Hl H2
thus proving irreducibility of C without having to use the Hensel

construction or Algorithm 3.8T at all. The author has verified, by

empirical tests, simulations and theoretical analysis, that the average

number of primes which must be tried before proving irreducibility is

less than 5 for all n < 200.

This "degree testing algorithm" is a much more efficient means

of proving irreducibility than merely searching for a prime p for which

C is irreducible mod p. For the probability that a random polynomial

C is irreducible modulo a given prime p is only about 1/n

[KNU69, Ex. 4. 6. 2-4] and by the Chinese remainder theorem these

mod p "trials" are independent, so an average of about n trials

would be required to prove irreducibility.

In order to compute the degree set D it is not necessary to

factor completely mod p. One can use the "distinct degree factorization1

algorithm described in [KNU69, p. 389] and[COL69]. Given a monic

squarefree polynomial A over GF(p), this algorithm produces a

list L = {(d., Aj, ..., (d ,A)) where the d, are positive integers,

d. < d < • • • < d and A. is the product of all monic irreducible
12 si

factors of A which are of degree d,. Thus A = A. • • • A and this
i Is

is a complete factorization just in case no two irreducible factors of

A have the same degree.

'f^T -31-

From the list L it is easy to construct a list A = {6 , 6 , ..., 6 }

of the degrees of all irreducible factors of A, and from A one

constructs the degree set D of degrees of all factors as follows:

put D = {0} and for i ^ 1, . . .,r replace D by D U {d + 6. :d < D}.

As remarked above, the time to compute the degree set from A is

dominated by rn.

Another way of finding A without performing a complete factoriza-

tion of A would be to perform only the first phase of Berlekamp's

newer algorithm, in which a matrix of polynomials is computed in a

block diagonal form. If A has r irreducible factors of degree i,

then there is an r. x r block of polynomials of degree i. One could

compute the determinant of the block, which is the product of all

irreducible factors of degree i, and thus obtain the distinct degree

factorization. But A is determinable directly from the matrix. The

computing time of this phase of the algorithm has not been analyzed,

but it is possibly faster than the distinct-degree factorization algorithm,

3 2 2 3
whose time is dominated by n (log p) + n (log p) .

Of course, if the degree tests fail to establish irreducibility, then

a prime p is selected among those which yield the smallest number

of irreducible factors, and the complete factorization must be obtained

for this prime. With the distinct degree factorization, this is

accomplished by applying Berlekamp's algorithm to each A. for which

d. # deg(A,), the other A. being irreducible already. If the first phase

•32- /M445

of Berlekamp's newer algorithm has been used, then one merely continue J

with the rest of the algorithm.

4.2. Computing a bound on the coefficients of factors. The height

of a polynomial C{v , .. ., v) with complex coefficients is defined to

be the maximum of the absolute values of the coefficients. We saw in

Section 3. 5 that in order to fully determine the true factors of C(x)

from its modulo p factorization it was necessary to have p /2 larger

than the height of any factor of C(x). Thus an a priori bound on the maximum

height of factors of C(x) is required. Typically, the height of every

factor of C(x) is no larger than the height of C(x) itself, but there exist

3 2
polynomials with factors of larger height, e.g. x +x -x-l =

2
(x +2x4l)(x-l). An excellent bound on the height of factors which is based

only on the height and degree of C(x) is given by A. 0. Gelfond in [GEL60,

pp. 13 5-140]. In fact, Gelfond establishes the bound for multivariate

polynomials C(v., . . . ,v) - CAv,, . . ., v) • • • C (v., .. .,v): if n, is the
Is 1 I' ' s m r ' s k

degree of C in v , n = n + •• • + n , and H(C) denotes the height of
K, 1 S

C, then

H(C) ••• H(Cm) <
1 m

(^ + 1) • • • (n + 1)
2nH(C) . (D

Gelfond shows that this bound is essentially realizable.

In the univariate case, a number of other bounds have been used, as

discussed in [MUS71, Section 3.4] and [MIG74]. The bounds discussed in

[MUS71], however, require more computation with the coefficients of C(x)

m I 4 4 s -33-

than (l), yet generally give a much larger bound. Mignotte [MIG7 4]

improves an earlier theorem of Gelfond which gives a bound similar

to the univariate case of (l).

4.3. Hensel's construction. In Algorithm Q, if the coefficients of the

initial values of A, B, S, T are chosen in the symmetric residue set

{-[p/ZJ, . .., 0, . .., LP/2J } and in Algorithm S the coefficients of Y

and Z are chosen in the symmetric residue set R = {-[p /2J, . . ., [p /2j}

then it is easy to show that the coefficients of A, B, S, T lie in R .

k k-1
Upon termination, we have i = 2 > j > 2 " for some k, and if i > j,

the coefficients of A, B, S, T are larger than necessary, making computa-

tions in Algorithm T more expensive than necessary. This may be

corrected by modifying steps 2-4 as follows:

2. [Done?] If i = j, exit. (This exit is taken only if j = 1.)

3. [Compute Y, Z.] if 2i > j, set q - pVq, A - A mod q,

B — B mod q, S - S mod a. T - T mod q, taking the coefficients

of A, B, S, T, in R~. Otherwise, just put q - q, A — A,

B - B, S *- S, T *- T. Set U - (C - AB)/q and apply

Algorithm S to A,i, S, T, U, obtaining Y, Z€Z[x] such

that AY + BZ = U(mod q) with coefficients in R~ and

deg(Z) < deg(A).

4. [Compute A*, B* and check for end.] Set A* - A + qZ,

-34- #144S

B* - B + qY. (Then C = A:::B!::(mod qq), A* ■ A(mod p),

B:': £ B(mod p), |lc(A!:;)l < p/2 and the coefficients of A*

and B* are bounded by qq/2.) If 2i > j (in which case

qq ■ pJ), set A - A*, B <- B* and exit.

This modification also avoids computing S and T at the last

iteration, since they are not used in further computations.

4.4. Finding true factors. There are two modifications of Aigorithm 3.8T

which can be of very significant benefit in the application to factoring

univariate polynomials over the integers. First, one should add as an

extra input the set i5=D (ID D-'-OD computed from the p
v Pl P2

mod p. degree sets and append the test "If d t jß , go to step 5. "

to step 3. This may greatly reduce the number of cases considered.

Secondly, a "trailing coefficient test" should be inserted in step

4a:

"a. Set t *- c TT tc(H,) mod m, t •- R; if t -j- tc(C*) then
itl X

continue to the next index set. Otherwise, set A* * • • • ".

Thus, if t fails to divide tc(C*), we know A* cannot divide

C!;: and the computation of A* and the trial division of C!;: by A:::

are skipped.

Except in rare cases, this trailing coefficient test will in fact

eliminate most of the computations of A* that are not true factors

and will thus greatly reduce the average computing time of the algorithm.

»fl44S 35-

S. Application to multivariate polynomials over the integers

Suppose now we are given a polynomial C t Z[v , .. ., v , x]

to be factored. The most direct way of applying the abstract algorithms

of Section 3 to this problem is to take D = Z[v , ... ,v] and the

modulus p = v - a for some integer a . That is, we evaluate C
n n n '

at v = a , thereby obtaining a polynomial C t E[x]. where

E = Z[v , .. ., v) (E = Z if n = 1). We recursively factor C,

resorting to the univariate algorithm of Section 4 when all of the v

are eliminated. We then try to lift the factorization of C to a correspond-

ing factorization of C modulo (v - a) n where j is chosen to
n n n

exceed the degree of C in v . Unfortunately this is not directly

possible, since E is not a field and we cannot necessarily find,

corresponding to a factorization C ■ AB, multipliers S and T c E[x]

such that AS + BT = 1, as is required in the Hensel construction.

However, if we back up and take D = Q(v , . . .,v), the field of

rational functions of v., .. .,v , v.-e still have CtDfx], p = v -a (■ D
1 ' n' ' n n

and C -- Cfv,, . .., v ,, a) « E[xl, where now E = Ofv,, . . ., v .)
1' n-l n ' 1' ' n-1

is a field and the Hensel construction can be applied.

The problem with this direct approach is that it requires many

rational function computations, which are generally much more expensive

than computations with polynomials (because of the gcd computations

required to keep results in lowest terms).

36- #144S

Another, probably better approach would be to restrict the

coefficient computations to D = Z[v ,..., v] by using a "trial Hensel

construction." This construction uses polynomials S, T t E[x] and

r c E = Zf v , v ,1 for which AS + BT = r, in an attempt to und a 1 1' n-1
Jn

factorization C = AB (mod (v - a)), A, B e D[x] corresponding to

a factorization C = AB (mod v - a). The attempt may fail, but it
n n

is not difficult to arrange the computation so that the construction is

guaranteed to succeed it Ä and B correspond to actual factors of C,

This approach has the drawback that the polynomials S and T must

be obtained independently (by a version of the Extended Euclidean

Algorithm).

The algorithm to be discussed in this section avoids these problems

by using a generalization of Hensel1 s construction which works

simultaneously with several moduli. We take D = Z[v., . . ., v j
1' ' n

and moduli p (a prime integer) and v, -a,-.-,v -a. Thus
1 1' ' n n

C ■ C(a., .. .,a , x) mod p is a univariate polynomial in E[x], where
1 n

E = GF(p) as in the univariate case. A factorization C = AB can be

1 jl jn
lifted to a corresponding factorization C = AB (mod p , (v - a.) , . . ., (v - a)),

A, B i D[x] by the generalized Hensel construction. This construction

works entirely with polynomials with integer coefficients (no rational

function operations) and increases the moduli quadratically.

«1445 -37-

The abstract algorithms of Section 3 have been stated only for a

single modulus, but we shall describe in this section the changes and

additional algorithms necessary to generalize to several moduli.

5.1. Choice of evaluation points. Given C € Z[v , . . ., v , x] we

first reduce to the case in which C is primitive and squarefree as in

Sections 3.1 and 3. 2. Note that for the assumed algorithm for factoring

the content of C in D = Z[v, ...,v] we just apply our multivariate

algorithm recursively with one fewer variable.

Next we choose integers a,,.... a such that the univariate
1' n

integral polynomial C(x) = C(a, ...,a , x) has the same degree in x

as C and is squarefree. The following algorithm first chooses a

trying 0,±1,±2,... until finding a value such that A= C(v , ..., v ,a ,x)

has the same degree in x as C and is squarefree. In the same way,

a _i» • • •» 3] are chosen so that the evaluated polynomial remains of the

same degree and squarefree at each stage.

1. [Initialize.] Set C-C, k-n.

2. [Prepare to choose a, .] Set a ♦- 0, c — lc(Ö).

3. [Evaluate c and C at v = a]. (Now Ct Z[v , ..., v , x],

deg (C) = deg (C), C is squarefree, and

c = lc(C) t Z[v1, ...,vk].) If cCv^ . . .,vk_1,a) = 0, go

to step 4. Otherwise, set A«-C(v, ...,v , a,x) e Z[v , . .., v ,x]

B — gcd(A,aA/8x)- If deg (B) > 0 (in which case C is not

-38- #1445

squarefree), go to step 4. Otherwise, set a. *-a, k —k - 1,

C ♦- A. If k > 0, go to step 2; otherwise, exit.

4. [Try again.] If a > 0, set. a --a; otherwise, set a «-1 - a.

Then go back to step 3.

Termination of this algorithm can be shown by considering at

step 3 the discriminant of C, which is an element of Z[v.,...,v,]

and can be divisible by only finitely many linear polynomials v - a, .

In the ideal case, this algorithm chooses all of the a equal to

zero and the coefficients of C are just the constant integer terms of

the coefficients (in Z[v.,.. ., v]) of C. In case one or more of the

a cannot be chosen to be zero, we have a problem of potentially serious

coefficient growth with each a. # 0, and the coefficients of C might

be huge. Although this problem has not been analyzed in detail, it

seems unlikely that the problem would appear except very rarely.

5.2. Choice of a prime and factorization over GF(p). We can now

choose a prime p, put C = C mod p, and factor C completely

over GF(p), thus obtaining a factorization of C modulo p, v -a, ...,v -a .

In this factorization, however, we again have the problem of the likelihood

of there being several factors corresponding to each irreducible factor

F of C. We can avoid this problem, except in rare cases, by

considering the complete factorization of our univariate polynomial

C{x). Suppose that the numerical coefficients of each factor F, of C

frl445 39-

are random integers and that the evaluation points a , . .., a result

in the factors

Fk(x) = F|Jal''",an'x)

having random integer coefficients. Since almost all polynomials over

the integers are irreducible (see [KNU69, Ex. 4.6.2-27]), it is highly

nrobable that

C=F1-.-Fq (1)

is the complete factorization of C. Thus, if we obtain the complete

factorization of C, we will only rarely have any more factors than

in (1), in contrast to the case with complete factorizations over GF(p).

Therefore, our procedure is this: factor pp(C) completely, using

the univariate case algorithm, obtaining

C = c- pp(C) = c- C. • • • C , c = content (C).

If r = 1, then C is irreducible and we are done. Otherwise, choose

a prime p such that C = C mod p has the same degree as C and

is squarefree modulo p. Then, instead of factoring C completely

over GF{p), just put

ö. = C. mod p
k k

Gk H lc(Gk)"1 Gk(mod p)

so that

C = eG. • • • G (mod p, v. - a,,..., v - a)
1 r 1 1 ' n n

c = lc(C), G monic.
(2)

■40- #1445

Thus we have only a partial factorization of C modulo p, v - a., ..., v - a ,

but one which does satisfy our partition requirement (Section 2, step 3):

suppose {!,..., q} is the disjoint union of index sets I,..., I

such that

^'HiJl Ci(modv1-a1,....Vn-an). ^ . Z,
i£lk

Then

FkHlc(Fk) TT G^mod p,v1 - a^ ...,vn - an).
i£lk

Thus the factorization (2) can be used as a basis for constructing c.

j Ji L
mod ^ = (p , (v. - a.) , . . ., (v - a)) factorization from which the

'1 1 ' 'v n n

true factors F. can be determined, and we can see that by the way (2)

was obtained we will usually have only one mod % factor corresponding

to each true factor.

Although the univariate factoring algorithm determined some prime

in the process of factoring C, it is not necessary to choose p

equal to this prime. It is better now to choose a large prime (since we

don't have to worry about finding a complete factorization mod p) to

reduce the number of Hensel construction iterations. We could, by

choosing p large enough, eliminate entirely the phase of the construction

which lifts from p to p\ but this might mean that p would be a

multiple precision integer and all of the mod p arithmetic during the

other phases of the algorithm would be multiple precision. The best

#144S ■4i.

course would seem to be to choose p as large as possible while

constrained to be in single precision integer, on the machine on which

the algorithm is implemented.

5.3. Generalized Hensel construction. Algorithm 3.7Q, the Quadratic

Hensel construction for a single modulus, may be regarded as an

algorithm for lifting a factorieation from one residue class ring to

another: let

E+ = D/(pJ)

E = EV(P) - D/(p).

Given

C = AB, AS + BT = 1, Ä monic in E[x],

Algorithm 3. 7Q obtains

C = AB, AS + BT = 1, A monic in E+[x],

A = A and B s B(mod p).

In this construction D is only required to be a commutative ring with

identity, and thus can itself be a residue class ring of the same form

as E . This suggests we can generalize the construction to any

number of moduli. To do so, suppose p ,..., p « D, j.. . K are

U
positive integers and m. = p, l<i<k. Define

D1 = DAmvP2,...,pk)

D2 = D/(mi» m2' p3' • • •' Pjc^

Dk ■ D/dBj, . ..,mk).

-42' #144S

and note that D, = D ./(p. ,), 0 < i < k - 1. Given
i i+l i+l ~ -

c = AoBo' Aoso + BoTo = l' Ao monic in Do[x1'
we perform, for i = 0,1, .. ., k - 1, Algorithm 3. 70 with E = D.,

E+ - Di+1' P = Pi+1' j = ji+l' lifting

C = A.B., A.S. + B.T. = 1, A, monic in Djx],
i i' i i ii * i il "

to

C = Ai+lBi+l' Ai+lSi+l + Bi+lTi+l = l' Ai+1 m0niC in Di+l[x1'

Ai+iEAi and Vi^V^Pi+P-

We obtain

C = h^ k^S^ + BkTk = 1, ^ monic in Djjx]

Aj^ = A0 and Bk ■ B0(mod p^ P2, • • •, Pk) •

To apply this to multivariate factorization, take D = Z[v ,. . .,v],

= P k = n + 1, p. = v. - a., m. = (v, - a.) 1 for 1 < i < n, and p ,.
' i i i' i v i i _ - > tj^

(prime integer). For simplicity, assume all of the a. are zero. Thus

D.

D.

■ Z[v^ ..., vn]/(v1, . .., vn, p) ■ GF(p)

= Z[v1,...,v>,]/(m1,v_, ...,v^,p) = GF(p)[vJAm.)
1 n '1' 2 n 1 T

D2 ■ Z[v1,...,vn]/(m1,m2,v3, ...,vn,p) = GF(p)(v^v2)/(n|fm2)

D ■ Z[v , ...,v]/(m , ...,m , p) ■ GF(p)[v , . . ., v]/(m , . .., m)
n inin inin

n+1
Z[v1,...,vn]/(m1, ...,mn,p).

We thus start with

C > AQBJJ, A0S0 + B0T0 = 1, A0 monic in GF{p)[x]

»1445 ■43-

and finish with

C = A ^B ., A .S iI +B .S xl = 1, A . monic in Zfv., . . .,v Mm., .. .,m , pJ)
n+1 n+l' n+1 n+1 n+1 n+1 n+1 1' n 1* ' n

A , - A. and B ,, = B-Cmod v., v , p).
n+1 0 n+1 (r 1* ' n'

To simplify the computation at each stage, it is best to reduce C to

C. in D,[x] initially: Put C . = C c D ^.[x] and for i = n,...,0 i il J n+1 n+l ' ' '

let

Then

hence

Ci=Ci+l mod Pi+l4 DiIxl-

CiHCi+lH-"HCn+l = C(modpi+l »W

C = . = C in D^x],

so we can use C . in place of C when lifting from

Ci+l=Ci=AiBi in Di[xJ

Ci+1 = Ai+lBi+l in Di+l[x^

For example, it is only necessary to use C t D [x] = GF(p)[v ,x]/(m)

when i = 0.

Going back to the abstract case, let us write £ for the domain

used in Algorithm 3.7Q, to avoid conflict with our current use of D;

thus

E+ = MPJ)

E - E+/(P) ■ */(?)•

Now consider the operations performed in Algorithm 3.7Q: these are

-44- ^144S

operations in ft, so we must consider the structure of £ in the

application of the algorithm with E = Di+1, E = D^ We see that we

should take

Ä=fii+1 = D/(ml....f»ltP1+2....,Pk)

since this gives

•^»W = D/(rni "VPi+rW-'-'V = Di= E

^/^i+P = D/(m
1.---.

m
i.

m
i+rPi+2.---.Pk)= Di+i ■ E+

as required.

In the application to D = Z[v ,..., v], we see that we must

be prepared to perform Algorithm 3.70 with coefficient arithmetic in

the domains

«l = Z[v1, ...,vn]/(v2, ...,vn,p) = GF(p)[v1]

fi2 = ^v^ ...,vn]/(m1,v3, ...,vn,p) = GF(p)[v1,v2]/(m1)

iB = Zivj, ...,vn]/(m1,m^^p) = GF(p)[v1, ...,vn]/(m1, ...,mn_1)

£ n+1 = Z[v1, . . .,vn]/{m1, .. .,mn).

Since the m are powers of the v , arithmetic in these domains

can be regarded as truncated power series operations. For example, we

multiply two elements of jß with an algorithm which drops terms

with degree at least j in any variable v . This assumes that the

it
evaluation points a are all zero: otherwise the reduction mod(v - a)

#144S -45-

would actually require a division by (v - a) . Therefore, if any

of the a are non-zero, it is probably best to translate the given

polynomial C(v ,...,v ,x) to

C*(vi' ' *'' V x) = C^V1 + ai Vn + an'X) '

and factor C* . If the complete factorization of C '' is F

then that of C is F • • F , where
1 Q '

Fjv,,. .., v , x) = F (v, - a,,..., v - a , x) .
i 1' ' n' 1 1 n n'

5.4. Generalization of other algorithms. The algorithm of Section 3.6,

for lifting several factors, may now be generalized to several moduli:

all that is required is to substitute the generalized Hensel construction

for the single modulus Algorithm Q in step 4. Similarly, Algorithm 3.8T

generalizes to several moduli with no difficulty. The theorems of

Section 3.9 must also be generalized, but this is also straightforward.

The following theorem generalizes Theorem 3.9Q.

Theorem G. Let D be a commutative ring with identity; p , ..., p
Jl jk be elements of D which are not zero-divisors; m = p m. = p.

1 1 * ' k k

for some positive integers Jii • • • > JiJ P = (?,»•••» Pk); m ■ (m, > • • • *mv)

Let A, B,A , B c D[x] satisfy

a. A B = AB(mod m);

b. deg(A) = deg(A) and lc(A) = lc(A) = 1;

c. A s A and B = B(mod p);

d. AS + BTH i{mod p).

Then A = A and B = B(mod m).

-46« #1445

Proof: By induction on k. If k = 1 then the theorem follows

from Theorem 3.9Q. Assume k > 1 and let

D0- D/{pit,..tPk\

Dk-i = D/(mlt....Vl.i»k)

Dk ■ D/{ml, ...,mk) .

Then D0 = Dj^^/lPj, ...>pk_i) and by a-d we have, in Dk_1[x],

A. B
1 1

AB

b'. degCAj) = deg(A), Ic^) = lc(A) = 1

c'. A = A and B = B(mod p , . .., p. _.)

d'. AS + BT=l(modp Pk-J-

By the induction hypothesis, we therefore have A = A and B - B

in D [x]. Now since D = D,/(p.) we have

A ^ A and B ■ B(mod p)
1 IK

in D[x]. The generalized Hensel construction gives S, and T,

satisfying

ASk . BTk = 1

in D [x]. We also have a1 and b* in D [x], so Theorem 3.7Q applies

and we conclude that A, = A and B, = B in D. [x], as desired.
1 1 kl "

Now Theorem 3.9T can be generalized by merely substituting

p , .. ., p and J ,»•••» Jk tor P and j and m ,..., m, for m in

its statement and proof, and invoking Theorem G in place of Theorem 3.90.

#144S -47-

6. Summary and conclusions

By means of abstract algorithms we have presented the algebraic

theory underlying the essential steps of a "Berlekamp-Hensel" algorithm

for factoring integral polynomials, including squarefree factorization,

choice of moduli, Hensel's construction, and searching for true factors.

The basic ideas of the univariate case algorithms have appeared previously

in the literature but are presented here in greater detail. A practical

basis for a multivariate case algorithm is aJs > riven in the generalized

Hensel construction.

Beyond the algebraic theory, we have gone into detailed considera-

tion of improvements which can be made in the basic algorithms and

comparisons between various alternative ways of implementing particular

steps. In the univariate case, the most significant of these considera-

tions related to the choice of a prime, the degree compatibility tests,

and the trailing coefficient test in the true factor testing algorithm. In

the multivariate case, we noted the importance of the translation to make

the evaluation points all zero and of the univariate factorization to reduce

the number of extraneous factorizations considered.

A number of interesting open problems have been noted, including

the existence of an algorithm for factoring integral polynomials with a

polynomial bounded computing time, the average computing time of the

univariate Berlekamp-Hensel algorithm for classes of reducible polynomials,

and the maximum and average computing times of the multivariate algorithm.

48- #1445

Acknowledgements ■ I am deeply indebted to George E. Collins for

his suggestions, guidance and encouragement throughout the course of

this work. I wish also to thank the referee for his many detailed sugges-

tions which have led to an improved version of the paper.

^1445 •49-

REFERENCES

[BER68] E. R. Berlekamp, Algebraic Coding Theory. McGraw-Hill, Inc.,

New York, 1968.

[BER70] E. R. Berlekamp, Factoring Polynomials over Large Finite Fields,

Mathematics of Computation. July, 1970.

f CHA7 3] R. T. Charleton, A Pascal Implementation of Algorithms for the

Factorization and Greatest Common Divisor Calculation of

Multivariate Polynomials, Master's Thesis, University of

Texas, August, 197 3.

[COL69] George E. Collins, L. E. Heindel, E. Horowitz, M. T. McClellan,

and D. R. Musser, the SAC-1 Modular Arithmetic System,

University of Wisconsin Technical Report No. 10, June, 1969.

[COL71] George E. Collins, the SAC-1 System: an Introduction and

Survey, Preceedings of the Second Symposium on Symbolic and

Algebraic Manipulation, Los Angeles, March, 1971.

[COL72] George E. Collins and D. R. Musser, the SAC-1 Polynomial

Factorization System, Computer Sciences Technical Report

No. 157, March, 1972.

[COL73] G. E. Collins, Computer Algebra of Polynomials and

Rational Functions, American Mathematical Monthly. Vol. 80,

No. 7, August-September, 1973, pp. 725-755.

-SO- #1445

I FLO^T] Robert W. Floyd, Assigning Meanings to Programs, Proceedings

of a Symposium in Applied Mathematics, Vol. 19 - Mathematical

Aspects of Computer Science (J. T. Schwartz, ed.). American

Mathematical Society, Providence, R. I., 1967, pp. 1^-32.

1GEL60| A. O. Gelfond, Trancendental and Algebraic Numbers. Dover

Publications, New York, I960.

[HOR69] Ellis Horowitz, Algorithms for Symbolic Integration of Rational

Functions, Ph. D. Thesis, Computer Sciences Department,

University of Wisconsin, 1969.

[KNU68] Donald E. Knuth, The Art of Computer Programming. Vol. 1;

Fundamental Algorithms. Addison-Wesley Publishing Co.,

Reading, Mass., 1968.

[KNU69] I3onald E. Knuth, The Art of Computer Programming. Vol. II.

Seminumerical Algorithms. Addison-Wesley Publishing Co.,

Reading, Mass., 1969.

[MIG74] M. Mignotte, An Inequality about Factors of Polynomials,

to appear in Mathematics of Computation. 1974.

[MUS71] D. R. Musser, Algorithms for Polynomial Factorization, Computer

Sciences Department, Technical Report No. 134 (Ph.D. Thesis),

September, 1971.

[RAB60] Michael O. Rabin, Computable Algebra, General Theory and

Theory of Computable Fields, Transactions of the American

Mathematical Society 95 (i960), pp. 341-360.

*?144S •51-

[VDW49] B. L. Van der Waerden, Modern Algebra. Vol. 1, trans, by

Fred Blum, Frederick Ungar Publishing Co., New York, 1949.

[WAN73] Paul S. Waog and L. Preiss Rothchild, Factoring Multivariate

Polynomials Over the Integers, SIGSAM Bulletin No. 28,

December, 1973.

[ZAS69] hans Zassenhcus, On Hen-el Factorization, I, Journal of

Number Theory 1. 291-311(1969).

52- #144S

